Package: exametrika 1.1.0

exametrika: Test Theory Analysis and Biclustering

Implements comprehensive test data engineering methods as described in Shojima (2022, ISBN:978-9811699856). Provides statistical techniques for engineering and processing test data: Classical Test Theory (CTT) with reliability coefficients for continuous ability assessment; Item Response Theory (IRT) including Rasch, 2PL, and 3PL models with item/test information functions; Latent Class Analysis (LCA) for nominal clustering; Latent Rank Analysis (LRA) for ordinal clustering with automatic determination of cluster numbers; Biclustering methods including infinite relational models for simultaneous clustering of examinees and items without predefined cluster numbers; and Bayesian Network Models (BNM) for visualizing inter-item dependencies. Features local dependence analysis through LRA and biclustering, parameter estimation, dimensionality assessment, and network structure visualization for educational, psychological, and social science research.

Authors:Koji Kosugi [aut, cre]

exametrika_1.1.0.tar.gz
exametrika_1.1.0.zip(r-4.5)exametrika_1.1.0.zip(r-4.4)exametrika_1.1.0.zip(r-4.3)
exametrika_1.1.0.tgz(r-4.4-any)exametrika_1.1.0.tgz(r-4.3-any)
exametrika_1.1.0.tar.gz(r-4.5-noble)exametrika_1.1.0.tar.gz(r-4.4-noble)
exametrika_1.1.0.tgz(r-4.4-emscripten)exametrika_1.1.0.tgz(r-4.3-emscripten)
exametrika.pdf |exametrika.html
exametrika/json (API)
NEWS

# Install 'exametrika' in R:
install.packages('exametrika', repos = c('https://kosugitti.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/kosugitti/exametrika/issues

Datasets:

On CRAN:

4.27 score 1 stars 25 scripts 9 downloads 55 exports 12 dependencies

Last updated 5 days agofrom:cce56eed38. Checks:OK: 5 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 24 2024
R-4.5-winOKNov 24 2024
R-4.5-linuxOKNov 24 2024
R-4.4-winOKNov 24 2024
R-4.4-macOKNov 24 2024
R-4.3-winNOTENov 24 2024
R-4.3-macNOTENov 24 2024

Exports:AlphaCoefficientBiclusteringBINETBiserial_CorrelationBNMcalcFitIndicesCCRRcrrCTTdataFormatdataFormat.longDimensionalityFieldAnalysisIIF2PLMIIF3PLMInterItemAnalysisIRMIRTITBiserialItemEntropyItemFitItemInformationFuncItemLiftItemOddsItemStatisticsItemThresholdItemTotalCorrJCRRJointSampleSizeLCALDBLDLRALogisticModelLRAMutualInformationnrsOmegaCoefficientpassagepercentilePhiCoefficientRaschModelsscorestanineStrLearningGA_BNMStrLearningPBIL_BNMStrLearningPBIL_LDLRAStudentAnalysisTestFitTestFitSaturatedTestInformationFuncTestStatisticstetrachoricTetrachoricCorrelationMatrixThreePLMTwoPLM

Dependencies:clicpp11glueigraphlatticelifecyclemagrittrMatrixmvtnormpkgconfigrlangvctrs

Readme and manuals

Help Manual

Help pageTopics
Alpha CoefficientAlphaCoefficient
Alpha Coefficient if Item removedAlphaIfDel
Prior distribution function with guessing parameterasymprior
Biclustering and RanklusteringBiclustering
Bicluster Network ModelBINET
Biserial CorrelationBiserial_Correlation
Binary pattern makerBitRespPtn
Bayesian Network ModelBNM
calc Fit IndicescalcFitIndices
Conditional Correct Response RateCCRR
Correct Response Ratecrr
Classical Test TheoryCTT
dataFormatdataFormat
dataFormat for long-type datadataFormat.long
DimensionalityDimensionality
Field AnalysisFieldAnalysis
IIF for 2PLMIIF2PLM
IIF for 3PLMIIF3PLM
Inter-Item AnalysisInterItemAnalysis
Infinite Relational ModelIRM
Estimating Item parameters using EM algorithmIRT
Item-Total Biserial CorrelationITBiserial
Item EntropyItemEntropy
Model Fit Functions for ItemsItemFit
IIF for 4PLMItemInformationFunc
Item LiftItemLift
Item OddsItemOdds
Simple Item StatisticsItemStatistics
Item ThresholdItemThreshold
Item-Total CorrelationItemTotalCorr
J12S5000.RdataJ12S5000
J15S500.RdataJ15S500
J20S400.RdataJ20S400
J35S515.RdataJ35S515
J5S10.RdataJ5S10
Joint Correct Response RateJCRR
Joint Sample SizeJointSampleSize
Latent Class AnalysisLCA
LDparam setLD_param_est
Local Dependence BiclusteringLDB
Local Dependence Latent Rank AnalysisLDLRA
Four-Parameter Logistic ModelLogisticModel
Latent Rank AnalysisLRA
Utility function for searching DAGmaxParents_penalty
Mutual InformationMutualInformation
Number Right Scorenrs
Log-likelihood function used in the Maximization Step (M-Step).objective_function_IRT
Omega CoefficientOmegaCoefficient
Passage Rate of Studentpassage
Student Percentile Rankspercentile
Phi-CoefficientPhiCoefficient
Plotting functions for the exametrika package of class "exametrika"plot.exametrika
print.exametrikaprint.exametrika
internal functions for PSD of Item parametersPSD_item_params
Rasch ModelRaschModel
Prior distribution function with respect to the slope.slopeprior
softmax functionsoftmax
Standardized Scoresscore
Stanine Scoresstanine
Structure Learning for BNM by simple GAStrLearningGA_BNM
Structure Learning for BNM by PBILStrLearningPBIL_BNM
Structure Learning for LDLRA by PBIL algorithmStrLearningPBIL_LDLRA
StudentAnalysisStudentAnalysis
Model Fit Functions for test wholeTestFit
Model Fit Functions for saturated modelTestFitSaturated
TIF for IRTTestInformationFunc
Simple Test StatisticsTestStatistics
Tetrachoric Correlationtetrachoric
Tetrachoric Correlation MatrixTetrachoricCorrelationMatrix
Three-Parameter Logistic ModelThreePLM
Two-Parameter Logistic ModelTwoPLM